
Partial Fractions Decomposition

Partial fractions decomposition is only used for rational functions (polynomials divided by polynomials)
and the degree of the numerator must be less than the degree of the denominator.

Partial fractions decomposition is used in various contexts in Math 1B, 1C and 2A, and other advanced math.
The process of decomposition may be slightly modified for its particular use in each class,
but the basic principle remains the same.

To find the denominators and the forms of the numerators of the partial fractions:

1. Completely factor the denominator into a product of linear factors ( bax  )
and/or quadratic factors ( cbxax 2 ) with negative discriminants ( 042  acb ).

Any factors of degree 3 or higher can still be factored into linear and quadratic factors.
The linear factors correspond to the real (integer, rational and irrational) roots of the polynomial.
The quadratic factors correspond to the pairs of complex conjugate roots of the polynomial.

2. Each linear factor ( bax  ) gives rise to a partial fraction of the form 
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
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where A  must be a constant.

If a particular linear factor has multiplicity n  (ie. it appears as nbax )(   in the factoring),
that factor actually gives rise to a series of n partial fractions
with the positive integer powers (1 to n ) of bax   as their denominators,
and constants as their numerators.

ie. 
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3. Each quadratic factor ( cbxax 2 ) gives rise to a partial fraction of the form 
cbxax
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where A  and B  must be constants

If a particular quadratic factor has multiplicity n  (ie. it appears as ncbxax )( 2   in the factoring),
that factor actually gives rise to a series of partial fractions
with the positive integer powers (1 to n ) of cbxax 2  as their denominators,
and linear functions as their numerators.
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NOTE:
The format of the linear function in the numerators may be represented differently in each class.
For example, in both Math 1B and 2A, we complete the square in the denominator,

writing it in the form ])[( 22 khxa  .
In Math 1B, we use partial fractions decomposition to find antiderivatives,

so we write the numerator in the form BhxA  ))(2( .
In Math 2A, we use partial fractions decomposition to find inverse Laplace transforms,

so we write the numerator in the form )()( kBhxA  .
These alternate ways of writing the numerator are designed to reduce the amount of work required

in the later steps of finding antiderivatives and inverse Laplace transforms.
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Its multiplicity is 3 , so there are 3  fractions (powers 1 to 3 )
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You must get the correct form for the partial fractions
before you attempt to find the unknown constants in the numerators,
especially if you use any shortcuts for finding the constants (eg. the method shown in lecture).
If not, the shortcuts will give you “answers”, but they will be wrong.

Practice writing the forms of the partial fractions decompositions of the following rational expressions.
What is the maximum degree of each numerator for which partial fractions decomposition will work ?
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To find the unknown constants in the numerators of the partial fractions:

A. Rewrite the sum of the partial fractions as a single fraction over their LCD (least common denominator)
which must be the denominator of the original fraction.

B. Set the numerator of this sum equal to the numerator of the original fraction.
C. Find the constants by either comparing the constant terms and the coefficients of the powers of 132 ,...,,, dxxxx

in the two numerators (where d  is the degree of the denominator),
or by substituting appropriate values of x  in the two numerators.

D. Sanity check your partial fractions decomposition by substituting a value for x  into the original fraction
and your partial fractions, and check that they give the same result.
The value of  x  should NOT be 0, ±1 nor any value you substituted for  x  to find the unknown constants.
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The fraction is now ready for integration without additional work in rewriting the fraction.



Partial Fractions Decomposition

Partial fractions decomposition is only used for rational functions (polynomials divided by polynomials)


and the degree of the numerator must be less than the degree of the denominator.

Partial fractions decomposition is used in various contexts in Math 1B, 1C and 2A, and other advanced math.


The process of decomposition may be slightly modified for its particular use in each class,


but the basic principle remains the same.


To find the denominators and the forms of the numerators of the partial fractions:
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Completely factor the denominator into a product of linear factors (
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Any factors of degree 3 or higher can still be factored into linear and quadratic factors.


The linear factors correspond to the real (integer, rational and irrational) roots of the polynomial.


The quadratic factors correspond to the pairs of complex conjugate roots of the polynomial.
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3.
Each quadratic factor (

[image: image14.wmf]c


bx


ax


+


+


2


) gives rise to a partial fraction of the form 

[image: image15.wmf]c


bx


ax


B


Ax


+


+


+


2


,


where 

[image: image16.wmf]A


 and 

[image: image17.wmf]B


 must be constants

If a particular quadratic factor has multiplicity 

[image: image18.wmf]n


 (ie. it appears as 

[image: image19.wmf]n


c


bx


ax


)


(


2


+


+


 in the factoring),


that factor actually gives rise to a series of partial fractions


with the positive integer powers (

[image: image20.wmf]1


 to 

[image: image21.wmf]n


) of 

[image: image22.wmf]c


bx


ax


+


+


2


 as their denominators,


and linear functions as their numerators.


ie. 

[image: image23.wmf]n


n


n


c


bx


ax


B


x


A


c


bx


ax


B


x


A


c


bx


ax


B


x


A


c


bx


ax


B


x


A


)


(


)


(


)


(


2


3


2


3


3


2


2


2


2


2


1


1


+


+


+


+


+


+


+


+


+


+


+


+


+


+


+


+


L




		NOTE:

The format of the linear function in the numerators may be represented differently in each class.


For example, in both Math 1B and 2A, we complete the square in the denominator,



writing it in the form 
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In Math 1B, we use partial fractions decomposition to find antiderivatives,



so we write the numerator in the form 

[image: image25.wmf]B


h


x


A


+


+


))


(


2


(


.


In Math 2A, we use partial fractions decomposition to find inverse Laplace transforms,
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These alternate ways of writing the numerator are designed to reduce the amount of work required



in the later steps of finding antiderivatives and inverse Laplace transforms.





eg.


[image: image27.wmf]3


2


2


4


)


1


2


3


)(


4


5


6


(


)


7


8


)(


9


10


(


)


(


+


+


+


-


+


-


x


x


x


x


x


x


x


N



The degree of the denominator is 

[image: image28.wmf]13


)


3


2


(


2


)


4


1


(


1


=


´


+


+


´


+
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NOTE:
 The discriminant is 
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NOTE: The discriminant is 
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You must get the correct form for the partial fractions
before you attempt to find the unknown constants in the numerators,
especially if you use any shortcuts for finding the constants (eg. the method shown in lecture).
If not, the shortcuts will give you “answers”, but they will be wrong.


Practice writing the forms of the partial fractions decompositions of the following rational expressions.


What is the maximum degree of each numerator for which partial fractions decomposition will work ?
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To find the unknown constants in the numerators of the partial fractions:

A.
Rewrite the sum of the partial fractions as a single fraction over their LCD (least common denominator)



which must be the denominator of the original fraction.


B.
Set the numerator of this sum equal to the numerator of the original fraction.

C.
Find the constants by either comparing the constant terms and the coefficients of the powers of 
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or by substituting appropriate values of 
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D.
Sanity check your partial fractions decomposition by substituting a value for 

[image: image55.wmf]x


 into the original fraction

and your partial fractions, and check that they give the same result.

The value of  x  should NOT be 0, ±1 nor any value you substituted for  x  to find the unknown constants.
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Coefficient of 
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Sanity check:
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The fraction is now ready for integration without additional work in rewriting the fraction.
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